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Introduction 

Horizontal flying wire measurements give beam profiles from which information 

about the beam momentum distribution and betatron distribution can be ex- 

tracted. When calculating these beam characteristics in the past, for the matter 

of simplicity, the beam has been assumed Gaussian. For beam profiles which 

may not be Gaussian, an algorithm to obtain the general beam momentum dis- 

tribution is developed using the Fourier transform to the beam profiles. Since 

the profile is the convolution of the momentum distribution and the betatron 

distribution, using a Fourier transform method makes calculations easier. 

Algorithm 

The horizontal beam profiles d(z) can be expressed as the convolution of the 

momentum distribution function f(y) and the bet&on distribution function 

s(z): 

and 

d,(z) = /_,_ f(~)!a(~ - VlT) fir (1) 

d*(z) = /m, f(~)sZ(z - 727) dT (2) 

where r E $$ and 11 is the dispersion. The momentum distribution is assumed 

to be normalized to unity for convenience, and Q is assumed to be not equal to 
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zero (it is just a matter of choosing the index). 

If we assume steady-state beam conditions, the two betatron distribution 

functions are related to each other as 

92(v) = ggl (/&) , (3) 

where zp = 2 - VT is the betatron coordinate. 

In order to find the momentum distribution, we take the Fourier transform of 

the above equations and get 

D1 (@) = F (II&~) .G (#&) > 
Dz(w) = F(w). G(w) , 
G(w) = GI (@w) , 

(4) 

F(0) = 1 (from the normalization). 

Thus we get a relationship between the Fourier transform of the momentum 

distribution and that of the beam profile, where 

F(w) = Da(w) 

D1 1 (dF> 
aw 

(5) 

In a special case of v1 = 0, i.e., profile 1 is obtained at the zero dispersion 

region, the Fourier transform of the momentum distribution is simply 

F(w) = h(w) 

U-F >. 
(6) 

D1 2L.J 1 
Since the total number of beam particles is the same for both profiles, we have 

Ox(O) = Dz(0). So it is guaranteed in the above expression that F(0) = 1. 

In the case of 71 # 0, we can always arrange the indices in such a way that 



(if It1 = 1, the two profiles obtained are actually identical and no further infor- 

mation about any distribution can be extracted from them). Then by applying 

the relation (5) to its right hand side repeatedly for N - 1 times, we get 

(8) 

For any given value of w, we have 

lim fN7jZW = 0 ) 
N-C.2 

(9) 

therefore the Fourier transform of the momentum distribution can be expressed 

&S 

In actual computation, for any given w, one can always find an integer No such 

that fNoq2w is sufficiently close to zero if No is sufficiently large. Then Eq. (10) 

can be approximated by 

F(qaw) x ; Da(fnw) 

n=O D1 (+w) 
(111 

Choice of No depends on the desired accuracy. 

Finally the momentum distribution function is obtained by taking the inverse 

Fourier transform of F(vxw), 

f(~) = & ll F(qa~)e’~~‘@w) (12) 

Test of the Algorithm 

Gaussian beam profiles are used to test the program with the above algorithm 

because in that case the momentum distribution is also Gaussian and its param- 

eters can be calculated analytically. The more general case in which neither 71 
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nor q2 is equal to zero is tested. And lattice parameters at the places of the flying 

wires are chosen to be those for the Fermilab TEVATRON, 

PI = 160.8 m, 

771 = 0.575 m, 

p1 = 185.85 m, 

q2 = 6.972 Tn. 

And two Gaussian profiles are generated with 

(13) 

CT1 = a(&) = 8.121 x lo-’ m, 
(14) 

n2 = a(&) = 1.269 x 1O-3 m. 

From the above, the calculated c for y is 

c7y = 1.33 x 1oP . (15) 

In the program, the number of data points is A4 = 192 in region (-3~2, 3~2). 

Figure 1 and 2 give the beam profiles. When using a computer to carry out 

the calculation, the discrete Fourier transform is used and it must be “good 

approximation” of the continuous Fourier transform. This results in a cut-off 

frequency, up to which the discrete Fourier transform is made, which is determined 

by the spatial separation of two adjacent profile data points (sampling theorem). 

In addition, for a Gaussian distribution of width 0, a frequency spectrum up to 

w. = s will give satisfactory reproduction of the original profile. For other types 

of distribution not much different from Gaussian type, the highest frequency 

component required for a true reproduction of the profile will be close to w,. 

In practice, the highest frequency component required for a true reproduction, 

which is - s, is lower than that restricted by the sampling theorem. Thus the 

former can be used as the cut-off frequency. In the case that profiles are far from 

Gaussian, one has to choose the cut-off frequency properly so that their frequency 
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spectra contain all the information one wants to know about the momentum 

distribution. 

Figure 3 shows the momentum distribution, obtained from the two given 

Gaussian beam profiles, with the width 

by = 1.34 x 1or4 , (16) 

which is in good agreement with the analytical result. 

The algorithm has also been tested with real beam profile data for one of 

the TEVATRON proton bunches. The lattice parameters are the same as given 

in (13). The bunch profiles are shown in Figures 4 and 5. Gaussian fitting to 

those profiles gives the beam widths of the same values as in (14). The Fourier 

transform method gives the bunch momentum profile shown in Figure 6. The 

width of that profile is 

by = 1.33 x 1oP . (17) 

The momentum distribution curve is a smooth one because the noise in the 

flying wire profiles has been filtered when the Fourier transform is taken with a 

proper cut-off frequency. With that cut-off frequency only the slow-varying part 

of the profiles, in which one is mostly interested, is preserved. The width change 

of the momentum profile due to the frequency cut is proven to be negligible from 

the above test. 
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